Identification of novel principles of keratin filament network turnover in living cells.
نویسندگان
چکیده
It is generally assumed that turnover of the keratin filament system occurs by exchange of subunits along its entire length throughout the cytoplasm. We now present evidence that a circumscribed submembranous compartment is actually the main site for network replenishment. This conclusion is based on the following observations in living cells synthesizing fluorescent keratin polypeptides: 1) Small keratin granules originate in close proximity to the plasma membrane and move toward the cell center in a continuous motion while elongating into flexible rod-like fragments that fuse with each other and integrate into the peripheral KF network. 2) Recurrence of fluorescence after photobleaching is first seen in the cell periphery where keratin filaments are born that translocate subsequently as part of the network toward the cell center. 3) Partial keratin network reformation after orthovanadate-induced disruption is restricted to a distinct peripheral zone in which either keratin granules or keratin filaments are transiently formed. These findings extend earlier investigations of mitotic cells in which de novo keratin network formation was shown to originate from the cell cortex. Taken together, our results demonstrate that the keratin filament system is not homogeneous but is organized into temporally and spatially distinct subdomains. Furthermore, the cortical localization of the regulatory cues for keratin filament turnover provides an ideal way to adjust the epithelial cytoskeleton to dynamic cellular processes.
منابع مشابه
An MBoC Favorite: Identification of novel principles of keratin filament turnover in living cells
This study examines the attributes of keratin intermediate filaments in single, live, nonmotile epithelial cells under steady-state conditions. From their substantive findings, the authors proposed a spatially and temporally defined “keratin cycle” that accounts for the genesis, maturation, and turnover of keratin filaments in the setting of live epithelial cells in culture. I suspect that, jus...
متن کاملActin-dependent dynamics of keratin filament precursors.
Actin filament and microtubule growth characteristics are defined by their different plus and minus ends. In contrast, intermediate filaments lack this type of polarity. Yet, intermediate filament network growth occurs by selective addition of newly formed and polymerizing keratin particles at peripheral network domains thereby allowing polarized network reorganization. To examine this process ...
متن کاملMultidimensional Monitoring of Keratin Intermediate Filaments in Cultured Cells and Tissues.
Keratin filaments are a hallmark of epithelial differentiation. Their cell type-specific spatial organization and dynamic properties reflect and support epithelial function. To study this interdependency, imaging of fluorescently tagged keratins is a widely used method by which the temporospatial organization and behavior of the keratin intermediate filament network can be analyzed in living ce...
متن کاملDissection of keratin network formation, turnover and reorganization in living murine embryos
Epithelial functions are fundamentally determined by cytoskeletal keratin network organization. However, our understanding of keratin network plasticity is only based on analyses of cultured cells overexpressing fluorescently tagged keratins. In order to learn how keratin network organization is affected by various signals in functional epithelial tissues in vivo, we generated a knock-in mouse ...
متن کاملFocal adhesions are hotspots for keratin filament precursor formation
Recent studies showed that keratin filament (KF) formation originates primarily from sites close to the actin-rich cell cortex. To further characterize these sites, we performed multicolor fluorescence imaging of living cells and found drastically increased KF assembly in regions of elevated actin turnover, i.e., in lamellipodia. Abundant KF precursors (KFPs) appeared within these areas at the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 15 5 شماره
صفحات -
تاریخ انتشار 2004